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Superconductivity in the doped bilayer Hubbard model
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We study by the Gutzwiller approximation the melting of the valence-bond crystal phase of a bilayer
Hubbard model at sufficiently large interlayer hopping. We find that a superconducting domain, with order
parameter d_2_,2, z being the interlayer direction and r the intralayer one, is stabilized variationally close to the
half-filled nonmagnetic Mott insulator. Superconductivity exists at half filling just at the border of the Mott
transition and extends away from half filling into a whole region till a critical doping, beyond which it gives
way to a normal-metal phase. This result suggests that superconductivity should be unavoidably met by
liquetying a valence-bond crystal, at least when each layer is an infinite-coordination lattice and the Gutzwiller
approximation becomes exact. Remarkably, this same behavior is well established in the other extreme of
two-leg Hubbard ladders, showing it might be of quite general validity.
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I. INTRODUCTION

Since its original formulation in the early 1960s, the
Gutzwiller variational approach!= has proved to be one of
the simplest yet most effective tools to deal with correlated
electron systems. The basic idea of the method is to modify
variationally the weights of local electronic configurations
with respect to an uncorrelated wave function |W,), for
which Wick’s theorem holds, according to the local interac-
tion terms. This is accomplished by means of the variational
wave function

W) =PlWo) =1 Prl¥y), (1)
R

where Py is an operator acting on the local Hilbert space of
the unit cell R. Both the uncorrelated wave function |W) and
the operators Pr must be determined variationally by mini-
mizing the average energy. In general the average energy can
be calculated only numerically* but in the limit of infinite-
coordination lattices, where a lot of simplifications
intervene’ that allow for an explicit analytical expression.5-
This is rigorously valid only for infinitely coordinated lat-
tices, nevertheless it is commonly used also in finite coordi-
nated ones, this is refereed to as the Gutzwiller approxima-
tion because in a single band model it happens to coincide
with the approximation introduced by Gutzwiller himself.?
In spite of its simplicity, many important concepts in
strongly correlated electron systems have originated from
Gutzwiller  variational calculations or, which is
equivalent,”'? from slave-boson mean-field theory.>!' We
just mention the famous Brinkmann-Rice scenario'? of the
Mott transition. Therefore, even though more rigorous ap-
proaches have been developed recently, such as dynamical
mean-field theory (DMFT) (Ref. 13) or LDA+U,'# there has
been a continuous effort toward improving the original
Gutzwiller wave function in finite dimensions,'® and extend-
ing the Gutzwiller approximation to account for the ex-
change interaction in multiorbital models,>'®-!8 for the
electron-phonon coupling,'® for interfaces effects,?® and also
for more ab initio ingredients.”! The reason for the continued
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use and development of the Gutzwiller wave function and
approximation is that the method is simple and readily adapt-
able to many different problems and provides reasonable re-
sults for a modest numerical effort.

In its simplest formulation, Eq. (1), the form of intersite
correlations within the Gutzwiller wave function are con-
trolled solely by the uncorrelated wave function |W,). This
aspect should not be problematic if the main interest is in the
gross features near a Mott transition or when a Hartree-Fock
Slater determinant gives already a reasonable description of
the actual ground state, which can only be improved by ap-
plying the operator P. However, there are interesting cases
where new types of correlations may arise near a Mott tran-
sition that are not explicitly present in the Hamiltonian.
Known examples are the d-wave superconducting fluctua-
tions that are believed to emerge in the single-band Hubbard
model on a square lattice close to the half-filled antiferro-
magnetic Mott insulator,”> and which are often invoked to
explain high-7,. superconductivity. A simple way to justify
the emergence of superconducting fluctuations is to take the
large U limit of the Hubbard model, which is known to cor-
respond in the low-energy sector to the 7-J model. Here, the
antiferromagnetic exchange J provides an explicit attraction
in the intersite singlet channel. This reflects the tendency of
neighboring sites to form spin singlets, which turns into a
true antiferromagnetic long-range order at half filling but
may mediate superconductivity upon doping. Indeed, the
Gutzwiller approximation and equivalently the slave-boson
mean-field theory applied to the #-J model do stabilize a
d-wave superconducting phase away from half filling,® a
result supported by direct numerical optimizations of | W),
with Pg projecting out doubly occupied sites and |W,) a
d-wave BCS-type wave function.”*~>” However, the simplest
Gutzwiller approximation in the pure Hubbard model away
from half filling does not stabilize any superconducting
phase, just because the on-site repulsion U does not couple
directly to the d-wave superconducting parameter. A way to
improve the wave function allowing for intersite spin-singlet
correlations could be using an enlarged nonprimitive unit
cell, with Py in Eq. (1) acting on a cluster of sites. With this
choice the wave function | W) breaks explicitly lattice trans-
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lational symmetry, so that one should properly modify the
variational scheme not to get spurious results, just like any
other cluster technique.?$-33

Alternatively, one might consider different models that
are manageable with the simple wave function, Eq. (1), and
which are expected to have a physical behavior similar to the
one looked for in the Hubbard model on a square lattice. One
case by now well known is that of two coupled Hubbard or
t-J chains. At half filling, both models are nonmagnetic Mott
insulators.>*36 The insulating phase is a kind of short-range
resonating valence-bond (RVB) spin liquid,’ i.e., a spin-
gaped state without any symmetry breaking. Actually this
state is adiabatically connected to the trivial insulator for
very large interchain coupling, which is a collection of inter-
chain dimers, what can be denoted as a VB crystal. Away
from half filling, dominant superconducting fluctuations
arise’®33% with a two-chain analog of a two-dimensional
d-wave symmetry. The emergence of strong superconducting
fluctuations appears here as the natural fate of doping the
half-filled VB Mott insulator,?’ realizing in one dimension
the RVB superconductivity scenario proposed by Anderson*®
in the early days after the discovery of high-T, superconduc-
tivity. An immediate question that arises is whether the above
one-dimensional behavior survives in higher dimensions,
namely, how robust is the two-chain RVB scenario upon in-
creasing dimensionality. This is actually the content of the
present work.

As a matter of fact, this question has been already ad-
dressed several times in connection with high-7. supercon-
ductors, specifically analyzing a bilayer Hubbard model by
various techniques, including quantum Monte Carlo*'~%
(QMC) and DMFT.##7 In Sec. IT we shall discuss more in
detail these early works while introducing the model. More
recently, the same problem has been studied at half filling by
an improved Gutzwiller approximation,'® which we present
in Sec. III together with a further improvement that we use
here to extend that analysis away from half filling. The re-
sults are presented in Sec. IV while Sec. V is devoted to
concluding remarks.

II. MODEL

Throughout this work we shall be interested in a bilayer
Hubbard model described by the following Hamiltonian

E 2 E tRR’CR ioCR"io + HoC + _2 E (ng,;— 1)

RR’ =l o R i=1
- ILE E (c;{,l(rcR,20'+ HC)
- 2 E E(k)ck zo'ck lU’+ E 2 (an
ko i=1 R i=1
- ILE (cl,l(rck,Z(r-*_ HC)
ko
=Hpp+Hy+H, (2)

where t, >0, CI{ ;e and cp;, create and annihilate, respec-
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tively, an electron at site R in plane i=1,2 with spin o,
nR,,:E,,ch,mcR’,-(, is the local occupation on layer i, and U is
the Hubbard repulsion on each lattice site. In order to study
the doped system it is more convenient to work in the grand-
canonical ensemble adding a chemical-potential term

—u2g R, to the model Hamiltonian (2). The partlcle num-
ber is then controlled by tuning . In Eq. (2) ck i Creates an
electron in layer i and spin ¢ with momentum k, and e(k)
e [-D,D] is the intralayer dispersion in momentum space,
where D is half the bandwidth that will be our unit of energy.
The noninteracting part of the Hamiltonian is better rewritten
introducing the bonding (e) and antibonding (0) combina-
tions

1
T _ T
Ckeo = ’_(Ck 1o T Ck20)s
V2
1
il _ T
Cko0 = r( k10~ Ck,2<r)’
V2
through which
Hhop + HL = 2 2 Ea(k)cii,ao-ck,a(r’ (3)
ko a=e,o0

where €,(k)=€(k)—t, e[-D-t,,D—t,] and ¢,(k)=€(k)
+t, e[-D+t,,D+t ] are, respectively, the bonding and an-
tibonding band dispersions.

If U=0 and the density is one electron per site, half fill-
ing, the model describes a metal until the two bands overlap,
i.e., t; =D, and a band insulator otherwise. For U>D+t |,
the model becomes equivalent to two Heisenberg planes
coupled to each other by an interplane antiferromagnetic ex-
change J | =4ti/ U. If each plane is a square lattice with only
nearest-neighbor hopping #, hence D=4¢, each Heisenberg
model is characterized by a nearest-neighbor antiferromag-
netic exchange J=4r>/U. This model has been studied in
detail by quantum Monte Carlo*'** and it is known to have a
quantum critical point that separates a Neel antiferromagnet,
for J, =2.5520J, from a gaped spin-liquid phase, for larger
J | . The latter can be interpreted as a kind of VB crystal, each
bond being an interlayer singlet, adiabatically connected to
the band insulator at U=0. In terms of the hopping param-
eters of the original Hubbard bllayer the critical point should
correspond to (7, /1), =12.5220=1.5881. This value is in
good agreement with direct QMC simulations of the Hub-
bard bilayer,*>* which find (¢, /t),=1.5-2. According to
these results, when 1.6=(z,/1)=4 one could start at U=0
with a metallic phase, and, upon increasing U, find a direct
transition into the VB Mott insulator. However, the story
must become more complicated if the U=0 Fermi surface at
half filling has nesting at the edge of the Brillouin zone, as it
happens for a square lattice with only nearest-neighbor hop-
ping. In this case, the U=0 and ¢, <4¢=D metal has a Stoner
instability toward Neel antiferromagnetism for arbitrary
small U, so that it is a priori not obvious that one could find
any direct metal to VB Mott insulator transition. In reality,
both cluster DMFT (Ref. 47) and QMC simulations find evi-
dence that such a transition does exist. Nevertheless, one
may always bypass this problem assuming that the intralayer
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hopping is such as not to lead to any nesting, the latter being
more an accident than the rule in realistic systems. In this
case, which we will implicitly assume hereafter, it is safe to
believe that a direct transition at half filling from a metal to
a VB Mott insulator does exist.

Within this scenario, the melting of the VB crystal into a
metallic phase can therefore occur either by doping away
from half filling but also upon decreasing U below the Mott
transition, still keeping half-filled density. In the latter case, a
recent study'® has shown that, within the Gutzwiller approxi-
mation, the VB crystal first turns into a superconducting
phase that eventually gives way to a normal metal upon fur-
ther decreasing U. This finding supports the RVB supercon-
ductivity scenario* and shows that the one-dimensional be-
havior persists in higher dimensions. It also agrees with the
indication of an enhanced pairing susceptibility obtained in
earlier studies by QMC.***% However the lowest tempera-
tures attainable so far by QMC are still above the eventual
superconducting critical temperature so that the existence of
a true superconducting phase at half filling is numerically
still an open issue. DMFT calculations, that could, in prin-
ciple, be carried out at zero temperature, were performed*®+’
but did not search explicitly for any superconducting phase.

Away from half filling, QMC indications of enhanced
pairing fluctuations are more convincing,*** although the
existence of a superconducting phase at low temperature is
still uncertain.*> This makes it worth addressing this issue by
the Gutzwiller approximation, which is not as rigorous as
QMC but at least can provide results at zero temperature.

III. METHOD

In order to study the bilayer Hubbard model, Eq. (2),
away from half filling we adopt the Gutzwiller approxima-
tion scheme developed in Ref. 18 to deal with the same
model at half filling. The variational wave function that we
use has the form as in Eq. (1) where (1) Pg acts on the full
Hilbert space that includes site R in layer 1 and site R in
layer 2; (2) |W,) is allowed to be a BCS wave function with
singlet order parameter in the channel C;-UTC;-M L+C£,2TC£,I I

The most general expression for Py is

Pr= > )\(R)F]F2|F1’R><F2,R ,
.,

(4)

where each state |F,-,R> denotes a local two-site electronic
configuration and the matrix A(R) has to be variationally
determined. Average values of operators on the wave func-
tion, Eq. (1), can be analytically computed in infinite-
coordination lattices provided the following constraints are
satisfied by Pg,51718

(Wo|PiPrIVo) =1, (5)

(V| PRPRCRIW0) = (W |Cr V), (6)

where Cy is the local single-particle density-matrix operator
with elements CI{,acR,B and c;’ac;, g« and B label single-
particle states (both layer and spin indices) and cI{a(cR,a)
create (annihilate) an electron in state « at site R. Expecta-
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tion values of local operators are then computed
straightforwardly'® as (PTORP),=(PROrPr)o (hereafter
(+++), denotes averages on the uncorrelated wave function
|W,), which can be easily computed by means of Wick’s
theorem). When calculating the average of the intersite den-
sity matrix, one finds that the physical single-fermion opera-
tor acting on W) is effectively replaced by a renormalized
one acting on W) according to

Cha— 2 RR)4pch g+ 2 O(R) per g )
B B

where the renormalization matrices R and Q are determined
by inverting the following set of equations'8

<PI{CI1,QPRCR,B>0 = R(R)ay<c;,ch,B>0
y

+2 O(R) y{cr 1R plo> (®)

(Pich.aPrCR g0 = 2 R(R) 4y{Ch Ck g0
Y
+2 OR)oylerycr gl (9)
Y

In Ref. 18, a different notation was used for the matrices R
and Q, namely, R :\@ and Q:\«"Z. In order not to generate
any confusion with the definition of a square root of a ma-
trix, and also for keeping more explicit the connection with
slave-boson mean-field theory,'! we have preferred here to
use R and Q. Despite the considerable simplification intro-
duced by the infinite-coordination limit, the variational prob-
lem remains still a difficult task to deal with because of the
large size of the local Hilbert space, which contains 16 states
so that \ spans, in principle, 16 X 16 matrices.

A further simplification can be achieved with a proper
choice of the basis set spanning the local Hilbert space. This
can be done, for instance, by using from the beginning the
natural basis, i.e., the single-particle basis which diagonal-
izes the variational density matrix (Cg)o.'® An alternative and
more efficient approach consists*” in defining the local op-
erator Pgr in a mixed-basis representation, namely, express-
ing |T';,R)=|T",R) in Eq. (4) in the original basis defined by
the model Hamiltonian and assuming that (I';, R|=({77,},R]
are Fock states in the natural basis, identified by the occupa-
tion numbers 7,=0, 1. With this choice, one can use as varia-
tional parameters just the eigenvalues of the density matrix
because the unitary transformation that relates the natural-
basis operators dy , to the original ones cy , needs not to be
known explicitly. This simplifies considerably all calcula-
tions. In the mixed original-natural basis representation one
introduces a new matrix

#(R) = \(R)VP'(R), (10)
where A(R) is the variational matrix in the mixed-basis rep-

resentation and P°(R) is the uncorrelated occupation-
probability matrix, with elements
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PO 1y (R) = ([ LRI R o = 85 1471 Por (R)
(11)
with
P R) iy = [T [°(R) J'of 1 = n°(R) '« (12)
and n°(R),, the eigenvalues of the density matrix (to be varia-

tionally determined). In terms of ¢, the constraints to be
imposed on the Gutzwiller wave function can be recast as*’

Tr(¢'¢) =1, (13)
Tr(¢' pd dg) = 8, g, (14)
Tr(¢' pdd)) =0, (15)

where, to simplify notations, we dropped the site label R,
and we also introduced matrix representations of the fermi-
onic single-particle operators. The average of local operators

and the renormalization factors acquire very simple
expressions
(P'OP)=Tr(¢'O¢), (16)
Rup= —Tr(#'c, ) (17
= TF——11(d'c, ,
p \rnoﬁ(l—noﬁ) b
Qup= ———=Tr(s'c! g (18)
= TF——11(d'c), .
g Vi1 —nY) b

Through Egs. (17) and (18) single-particle fermionic opera-
tors are automatically mapped into renormalized operators in
the natural basis, and Eq. (7) is replaced by

ch— 2 Ropdly+ 2 Qupdp. (19)
B B

Note the presence of the latter term in the right-hand side of
Eq. (19), which makes it possible that a creation operator in
the original representation turns into an annihilation operator
in the natural one. Its existence is a direct consequence of
allowing |W,) to span also BCS-type wave functions and/or
Pr to couple states with different particle numbers. Should
|W) describe a normal metal and Pg be diagonal in the
particle number, Oup would be strictly zero, as was the case
in Ref. 49. Therefore Eqgs. (17)-(19) extend Egs. (A10) and
(A18) of Ref. 49 to the more general case in which super-
conductivity is allowed.

Practically, it is convenient*® to generate variational ma-
trices ¢ that directly satisfy Eqs. (13)—(15) hence unequivo-
cally determine the parameters ng, and only after impose, by
proper Lagrange multipliers, that the uncorrelated |¥,) has
an average local density matrix with eigenvalues ng. We end
mentioning that the elements (l)ry{;l}zkr{ﬁ}\/% of the matrix,
Eq. (10), correspond to the slave-boson saddle-point values
within the mean-field scheme recently introduced by Lech-
ermann et al.'!

It may happen that, in spite of all the above simplifica-
tions, the variational space thus generated is still unnecessar-
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ily large. For instance, if one looks for a variational wave
function that preserves particle number, all the elements of A
connecting subspaces of the local Hilbert space with differ-
ent particle numbers should be identically zero. Therefore it
would be desirable to specialize the general procedure
sketched above in such a way that symmetries can be built
into the variational wave function from the onset. In general,
given a symmetry group G, that one would like to enforce,
we must require, in addition to Egs. (5) and (6), that

[Pr.Gol =0. (20)

However, in the mixed representation there may be some
symmetry operations that cannot be defined without an ex-
plicit knowledge of the natural basis in terms of the original
one, which would make the whole method much less effi-
cient. If one decides not to implement these symmetries, but
only those, symmetry group G C G, that commute with the
most general unitary transformation U connecting original
and natural basis, i.e.,

[U.G]=0,

compatibly with the variational ansatz, the above described
variational method can be still used with the following
modification.

Let us assume this case and define a unitary operator V
that transforms the Fock states in the original basis into
states that decompose the local Hilbert space in irreducible

representations of the group G. We define G to be the repre-
sentation of G in such a basis. Because of our choice of the
subgroup G, V does the same job even in the natural basis,
although this is unknown. Since the trace is invariant under
unitary transformations, all formulas from Egs. (13)—(18) re-
main the same even if the variational matrix ¢ and the matrix
representation of the single-fermion operators are defined in
the states of the irreducible representation, both in the origi-
nal and natural basis, with the additional symmetry
constraint

[¢.G]=0, (21)

which follows from Eq. (20). We note that the matrix repre-
sentation of a single-fermion operator in these states is
readily obtained once V is known and is trivially the same for
both original and natural operators. Therefore it is sufficient
to create and store it at the beginning of any calculation.

As an example, which is directly pertinent to this work,
let us consider G the group of spin SU(2) transformations. In
this case an irreducible representation is readily obtained and
consists of states with fixed total spin S and its z-projection
S,, of the general form |T",S,S.), where I serves as an addi-
tional label to distinguish between different states with same
S and S, in the original representation. The operator V is thus
the unitary transformation that connects Fock states in the
original basis, [{n,}) to the states |I',S,S.),

V:|{na}> -

We use the same V to generate from the Fock states in the
natural basis, which we reiterate is always unknown, the

I.S,5.).
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states |I', S ,S.). It follows that, in order to preserve full spin
SU(2) symmetry,

r.5.5,7.5.5, = 05505 5 Prsr.s» (22)

is a block matrix.

IV. RESULTS

Let us turn now to study the bilayer Hubbard model, Eq.
(2), away from half filling. As mentioned, the filling is con-
trolled by a chemical-potential term —u>gny ; that we add to
Hamiltonian (2). We search for a variational solution that
allows for singlet superconductivity and does not break spin-
SU(2) symmetry. In this case, the unitary transformation that
would connect original to natural bases, would leave spin-
SU(2) generators invariant, so that the method described in
the previous section is applicable.

We already said that the Gutzwiller operator Py in Eq. (4)
acts on the whole local Hilbert space of two sites, R in layer
1 and R in layer 2. The variational energy to be minimized is
then the sum of two terms. One is the contribution of the
local energy, same R but both layers, terms, which, accord-
ing to the results of the previous section, reads

Eppe= Tr[df'(Hm H, - uS nR,i)cﬁ], (23)
Ri

where all operators are meant to be matrices in the local
representation invariant under SU(2) symmetry. The other
contribution to the total energy is the intralayer hopping
E},,- This can be shown to coincide with the ground-state
energy of a variational single-particle Hamiltonian'8

HZop = E wlifkwk7 (24)
k

where 'ﬁli:(dli,nvdllzpd—k,l 1»d_x ) is the Nambu spinor in
momentum space and f‘k a 4 X4 matrix in the natural basis
that depends explicitly on momentum and on some Lagrange
multipliers. These are included to enforce that the average of
the single-particle density matrix on the ground state—to be
identified with |W,) in Eq. (1)—is diagonal with matrix ele-
ments satisfying

(Woldiyodrio Vo) = Tr(¢' i) = 1)

The matrix f‘k has the general expression

. <e(k)Z+;, KA+ 5 ) 0s)

ek)AT+ 5" - ek)Z' - 7

where the 2 X2 matrices # and 5 are the aforementioned

Lagrange multipliers while Z and A have elements (labeled
by j,l=1,2, the layer indices)

2
Zjy=2 (RiR; — 0:.,0:)), (26)
i=1
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0.3

SC order parameters

FIG. 1. (Color online) Interplane (blue circles) and, with re-
versed sign, intraplane (red triangles) superconducting order param-
eters at half filling as function of U/D. The vertical line indicates
the first-order transition that we think identifies the onset of Mott
insulating behavior. Inset shows the variational energy in units of D.

2
AA/,I = (Ri,ij,l + Ri,lej)- (27)
i=1

We solved numerically the variational problem assuming for
simplicity a flat density of states with half bandwidth D (we
do not expect the results to change qualitatively by adopting
a more realistic density of states). In order to compare with
the half-filling results reported in Ref. 18, we fixed the value
of the intradimer hopping 7, /D=0.5 and solved the varia-
tional problem for different values of U/D and w/D. Note
that this value in the case of a square lattice with nearest-
neighbor hopping ¢ corresponds to 7, =2¢, above the critical
value for the stability at large U of the VB Mott insulator.**
At half filling, u/D=0 and we recover all results of Ref.
18. Specifically, we find a first-order metal to VB insulator
transition. In the metallic phase just before the transition,
singlet superconductivity emerges. In Fig. 1 we show as
function of U/D the behavior of the interlayer, A | and in-
tralayer, A, superconducting order parameters, defined as

A= <\I'G|C£,1¢C£,2¢ + CI{,zTCI{,uN’G), (28)

P i
A= <‘1’G|CR,nCRr,,-1 + cR,’iTc;r{,l-j\I’G), (29)

where R and R’ are nearest-neighbor sites on layer i=1,2.
We find that, near the first-order transition that we think
identifies the actual Mott transition, both order parameters
are finite and have opposite sign, the so-called d,>_,> symme-
try known to be dominant in the two-chain model,>’ and
which QMC simulations***® indicate as the leading pairing
instability. The variational energy that we obtain appears to
be slightly lower than that found in Ref. 18, as one could
have expected due to the larger number of variational param-
eters. Nonetheless, the critical U, at the Mott transition is
only slightly reduced to U./D=2.02 for ¢, /D=0.5. We note
that the phase at U> U, that we believe is Mott insulating,
still shows a finite superconducting order parameter that dies
out upon increasing U. As discussed in,'® we think this might
be a spurious result of our variational approach that lacks
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FIG. 2. (Color online) Average density n summed over both
layers as a function of the chemical potential u<<0 for selected
values of interaction U/D.

intersite charge correlations crucial in stabilizing a genuine
Mott insulating phase.'’

We study finite hole doping by varying w/D <0 at differ-
ent values of U/D. Before discussing the variational results,
we briefly sketch the behavior of the doped noninteracting
system, U/D=0. The interlayer coupling gives rise to bond-
ing and antibonding bands, see Eq. (3). With the chosen
value of 7, =0.5D, these bands overlap at half filling and the
system displays a metallic behavior. When the chemical po-
tential is lowered, holes are injected into the system inducing
a depletion of both bands until, at a given value of the chemi-
cal potential, the upper (antibonding) band empties. For the
chosen 7, and for a flat density of states the complete deple-
tion of the antibonding band happens at w=0.5D, corre-
sponding to quarter filling n=1. As a consequence, both the
intralayer (Ej,,) and interlayer (E,) hopping contributions
display a discontinuity in their first derivatives at quarter
filling, signaling that the antibonding band is no longer con-
tributing. The total energy however remains smooth for any
value of u (or equivalently n), as it should. When U/D # 0,
the behavior that we find depends crucially if U is smaller or
greater than U,, namely, if the half-filled state is a metal or
an insulator.

A. Doping the metal at U<U,

As long as U<U,, any change in u induces a continuous
change in the total particle number; a finite compressibility
signal of a metallic behavior, as shown in Fig. 2. Alike the
uncorrelated case, a cusp appears in the evolution of n at
quarter filling, that we explain seemingly as the depletion of
the antibonding band. Indeed, when U< U, the metallic so-
lution evolves just like the noninteracting case. The main
effect of interactions is to slightly reduce interlayer and in-
tralayer hopping contributions with respect to their uncorre-
lated counterparts, as shown in Fig. 3 where we plot the
different contributions Epops E 1, and Ey to the variational
energy. The intralayer hopping contribution E),, diminishes
in absolute value with increasing doping because of the
depletion of the bands, as it occurs in the noninteracting
system; at quarter filling it displays a cusp and correspond-
ingly the interlayer hopping E | starts to rapidly decrease, the
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FIG. 3. (Color online) Left panel: the different contributions to
the variational energy as a function of doping for U/D=1 and per
lattice site R, i.e., summed over both layer. As a reference, the
behavior of noninteracting interlayer and intralayer hopping contri-
butions is plotted (dotted lines). In the inset the total energy
E, . (n)=E,,.+un is shown: despite the cusp observed in the hop-
ping contributions, the evolution of E,,(n) is smooth. Right panel:
occupation of the variational lower and upper bands as function of
n. Dotted lines represent average occupation of even and odd
orbitals.

effects of U being more and more negligible as the low-
density regime is approached. In the right panel of Fig. 3 we
show the occupancies n? and ng of the variational lower and
upper bands, respectively, which are obtained by diagonaliz-
ing the associated variational Hamiltonian, Eq. (24), and ac-
tually coincide with the eigenvalues of the single-particle
density matrix. As in the uncorrelated system, the occupancy
of the upper band vanishes at quarter filling. We stress the
fact that in the present approach these states are variationally
determined and may not correspond to the even and odd
combinations of the original operators. However, as long as
U<U,, we find that the average values of bonding and an-
tibonding band occupancies, n, and n,, almost coincide with,
respectively, n) and n.

Concerning superconductivity, we find that the interlayer
order parameter, Eq. (28), is extremely small, practically
zero within our numerical precision, see Fig. 4. The intra-
layer order parameter strictly follows the interlayer one,
hence is also zero.

0.6 y
.08
®up=1 .
A UD=3 P
04 | vup=8 %[,
o “ﬂ

0 L
0 04 08 12

FIG. 4. (Color online) Superconducting interlayer order param-
eter A | for different values of U/D. In the inset we plot the differ-
ence between the local densities of the BCS variational wave func-
tion |W,) and of the actual one |¥;) at U/D=3.
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FIG. 5. (Color online) Left panel: contributions to the varia-
tional energy as function of doping for U/D=3. In the inset the
total energy E,,,(n)=E,,+ un is shown: despite the discontinuities
observed in the hopping contributions, the evolution of E(n) is, to
our numerical accuracy, smooth. Right panel: occupancies of lower,
n?, and upper, ng, variational bands as a function of n. Dotted lines
represent average occupation of even, n,, and odd, n,, orbitals. Note
that the insulating phase at half filling is identified by the lower
band fully occupied and the upper one empty. The latter empties
again for doping 2—-n>0.73.

B. Doping the VB Mott insulator at U>U,

When U>U,, i.e., when the half-filled system is insulat-
ing, the particle number remains stuck to its half-filled value
n=2 until |u|=|u*|=(U-U,)/2. This simply follows from
the existence of the Mott gap at half filling. Upon doping,
i.e., when |u|>|u*|, a metallic behavior is clearly found.
However, within our numerical precision we cannot establish
whether the evolution from the insulator to the metal occurs
smoothly (yet with a diverging compressibility) or through a
weak first-order transition. Till the largest value of U we
considered, we could not find any appreciable discontinuity
in the evolution of n at large doping, unlike for U< U, where
a cusp is observed at quarter filling. In addition, contrary to
the case U< U,, here we find a clear superconducting signal
between half and quarter filling, see, e.g., the behavior of
A, Eq. (28), shown in Fig. 4. We note that A | has a non-
monotonous behavior, first increases quite rapidly with U
and for larger values decreases. Like at half filling, a finite
A | produces through Eq. (19) also a finite intralayer A, Eq.
(29), not shown here, which happens to have opposite sign.

Let us now consider in detail the energetic balance for
U>U, and its differences with respect to U<U,.. At very
large U (not shown), as holes are injected into the system,
both intralayer and interlayer hopping contributions first in-
crease in absolute value, then saturate around approxima-
tively quarter filling, and eventually decrease as the low-
density regime is attained, as expected when approaching the
bottom of the variational bands. In other words, the behavior
of energy at large U(U>U,) between half and quarter fill-
ings is quite different from the noninteracting case, in con-
trast to the case of U<<U,. This points to a very different
influence of a strong interaction close to half filling and far
away from it and, indirectly, emphasizes the role of the su-
perconductivity that we find for 2>n>1. For U= U,, i.e.,
closer to the half-filled metal-insulator transition, the picture
is slightly different, as shown in Fig. 5 for U/D=3. To begin
with, at small dopings the system gains in intralayer hopping
energy while the interlayer one seems to be slightly reduced.
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Remarkably, even if the total energy is, within our numerical
accuracy, a smooth function of n, both hopping contributions
display a discontinuity at /D ==1.28, which corresponds to
a local density of n=1.27. Here the occupation of the upper
variational band goes to zero (cf. right panel of Fig. 5), even
though nothing similar occurs in the occupation of the physi-
cal antibonding band. At this filling fraction, the interlayer
hopping energy gain has an upward jump, contrary to the
intralayer one, even though further doping leads to a reduc-
tion in both. A drop in the amplitude of the superconducting
order parameter A | is also found at this point. Further dop-
ing diminishes A |, which vanishes approximatively at quar-
ter filling. A similar feature is observed in another quantity:
the difference between the average density of the uncorre-
lated wave function |W,) and the actual density of |¥). In-
deed, just like n? and ng may not correspond to the occupa-
tion of the bonding and antibonding bands, n’=n{+n., which
is the average density of the BCS-type variational wave
function, may differ from the physical one. In the inset of
Fig. 4 we show their difference for U/D=3. We observe that
they actually deviate when superconductivity is found and
their difference jumps down abruptly for n<<1.27.

V. CONCLUSIONS

In this work we have studied by means of an extension of
the Gutzwiller approximation the effect of doping a bilayer
Hubbard model. We have considered a value of the interlayer
hopping ¢, such that, at half filling, the model should un-
dergo a direct transition at U=U, from a metal to a nonmag-
netic Mott insulator, a valence-bond crystal consisting of in-
terlayer dimers. This choice offers the opportunity to study
how a valence-bond crystal liquefies either by reducing the
Coulomb repulsion keeping the density fixed at one electron
per site, or by adding mobile holes. The melting upon de-
creasing U was already shown'® to lead to a superconducting
phase intruding between the valence-bond insulator at large
U> U, and the normal metal at weak U << U,.. Here we show
that superconductivity arises also upon melting the valence-
bond crystal by doping. In other words, the superconducting
dome that exists at half filling close to U, extends into a
whole region at finite doping. The maximum superconduct-
ing signal is found at 20% doping, and beyond that it
smoothly diminishes, disappearing roughly at quarter filling
within our choice of parameters. These results are appealing
as they show that the well-established behavior of a two-leg
Hubbard ladder!836-373% seems to survive in higher dimen-
sions, actually in the infinite-dimension limit where our
Gutzwiller approximation becomes exact. It is obvious that,
in spite of all improvements of the Gutzwiller variational
approach, to which we contribute a bit with this work, this
method remains variational hence not exact. Therefore it is
still under question if superconductivity indeed arises by
metallizing the valence-bond Mott insulating phase of a
Hubbard bilayer, which we believe is an important issue of
broader interest than the simple bilayer model we have
investigated.®® There are actually quantum Monte Carlo
simulations*>*3%>48 that partially support our results as they
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show a pronounced enhancement of superconducting fluc-
tuations close to the half-filled Mott insulator. However a
true superconducting phase is still unrealized at the lowest
temperatures that can be reached by quantum Monte Carlo.
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On the other hand, dynamical mean-field calculations, that
can access zero-temperature phases, did not so far looked for
superconductivity.*>4” Therefore we think it would be worth
pursuing further this issue.
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